• About
    • Mission & Goals
    • Associate Laboratory
    • Governance
    • Infrastructure
    • Contact us
  • People
    • Faculty
    • Researchers
    • PhD Students
    • Alumni
    • Support Team
  • Research
    • Research Groups
      • Bioprocess Engineering
      • Biological Sciences
      • Biocatalysis and Biotransformation
      • Biospectroscopy and Interfaces
      • Stem Cell Engineering
    • Publications
      • Peer-reviewed publications
      • Books & Book Chapters
      • PhD Theses
      • Oral communications
    • Funded Projects
      • National Projects
      • International Projects
  • Innovation
    • Bridging Innovation and Industry
    • Collaborative Laboratories
    • Research Infrastructures
  • Education
    • PhD Programmes
    • MSc Degrees
    • Advanced Training
  • News & Events
    • News
    • Events
    • Media
©2024, IBB. All rights reserved.
iBB iBB
  • About
    • Mission & Goals
    • Associate Laboratory
    • Governance
    • Infrastructure
    • Contact us
  • People
    • Faculty
    • Researchers
    • PhD Students
    • Alumni
    • Support Team
  • Research
    • Research Groups
      • Bioprocess Engineering
      • Biological Sciences
      • Biocatalysis and Biotransformation
      • Biospectroscopy and Interfaces
      • Stem Cell Engineering
    • Publications
      • Peer-reviewed publications
      • Books & Book Chapters
      • PhD Theses
      • Oral communications
    • Funded Projects
      • National Projects
      • International Projects
  • Innovation
    • Bridging Innovation and Industry
    • Collaborative Laboratories
    • Research Infrastructures
  • Education
    • PhD Programmes
    • MSc Degrees
    • Advanced Training
  • News & Events
    • News
    • Events
    • Media
iBB

TTraFFic

Home / TTraFFic

TTraFFic

Acronym TTraFFic Title Toxicity and Transport for Fungal Production of Industrial Compounds Summary

Organic acids are important emerging industrial building blocks. Yeasts and fungi are often natural producers of a range of organic acids, and are particularly efficient hosts because of their high tolerance to weak acids as well as to low pH, a highly desirable trait for industrial application due to reduced downstream processing costs. In concert we aim to develop two major improvements to the production of itaconic acid (IA) by fungal hosts. 1) We will optimize the production pathway, taking into account and making use of the multiple compartments in the cell. Because of these multiple compartments, we need to understand how metabolic properties of the compartments suit the production process. 2) We will address transport between compartments and eventually out of the cell. At the same time we need to improve the host organism, by reducing sensitivity to the compound and by reducing the deleterious effects that the production of IA in the cell can exert within the specific compartments in which production takes place. To do this, we take an integrative approach of genome-wide phenotypic screens to understand and reduce toxicity, metabolic modeling and engineering to understand the effects of and improve pathway topology, and detailed kinetics and novel screening for transporters to improve pathway productivity by reducing rate limiting transport steps. Such an integrated approach, focused on the Coordinatorultaneous optimization of host and pathway for the production of one specific compound, has not been previously addressed. We expect to improve the production rates of IA to levels suitable for commercialization of the fungal production process for novel bulk-scale applications that will open up new opportunities in the framework of a bio-based economy.

Project webpage Start year 01/04/2016 End year 30/09/2019 ID ERA-IB-2-6/0003/2014 iBB Role Partner iBB Budget 122 000,00 € Research Group BSRG PI Nuno Mira Project Partners ATn Centre of Industrial Biotechnology GmbH (Coord.), Biotechnology Research and Information Network, Dutch Organization for Applied Scientific Research, Pak Gida Uretim Pazarlama A.S., RWTH Aachen University, University of Amsterdam - Swammerdam Institute for Life Sciences Status Completed Funding ERA-IB Funding-logos: UE / FCT
ERA-IB-2_Logo__3__07
  • Previous PortfolioStem Cell Angelman
  • Next PortfolioUroprint
    Stem Cell Angelman

About

iBB aims to excel in research and advanced education in biotechnology, by responding to the challenge of exploring innovative approaches to key scientific and technological questions in Biosciences and Bioengineering and of transforming scientific knowledge into tangible innovation.

Contacts

Técnico Lisboa
Av. Rovisco Pais
1049-001 Lisboa, Portugal

+351 218 419 065
ibb@ibb.pt

Associate Laboratory

Institute for Health and Bioeconomy (i4HB)

Projects funded by:

iBB Funding: FCT / Portuguese Republic / EU / Portugal 2020 / PRR

 Privacy Policy  © 2024, iBB – Institute for Bioengineering and Biosciences

in
Everywhere
IBB People
Publications
Call us: +351 218419065  /  Email us
Copy